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Abstract

Objective—Optimal mental health care is dependent upon sensitive and early detection of mental 

health problems. The current study introduces a state-of-the-art method for remote behavioral 

monitoring that transports assessment out of the clinic and into the environments in which 

individuals negotiate their daily lives. The objective of this study was examine whether the 

information captured with multi-modal smartphone sensors can serve as behavioral markers for 

one’s mental health. We hypothesized that: a) unobtrusively collected smartphone sensor data 

would be associated with individuals’ daily levels of stress, and b) sensor data would be associated 

with changes in depression, stress, and subjective loneliness over time.

Methods—A total of 47 young adults (age range: 19–30 y.o.) were recruited for the study. 

Individuals were enrolled as a single cohort and participated in the study over a 10-week period. 

Participants were provided with smartphones embedded with a range of sensors and software that 

enabled continuous tracking of their geospatial activity (using GPS and WiFi), kinesthetic activity 

(using multi-axial accelerometers), sleep duration (modeled using device use data, accelerometer 

inferences, ambient sound features, and ambient light levels), and time spent proximal to human 

speech (i.e., speech duration using microphone and speech detection algorithms). Participants 

completed daily ratings of stress, as well as pre/post measures of depression (Patient Health 

Questionnaire-9), stress (Perceived Stress Scale), and loneliness (Revised UCLA Loneliness 

Scale).

Results—Mixed-effects linear modeling showed that sensor-derived geospatial activity (p<.05), 

sleep duration (p<.05), and variability in geospatial activity (p<.05), were associated with daily 

stress levels. Penalized functional regression showed associations between changes in depression 

and sensor-derived speech duration (p<.05), geospatial activity (p<.05), and sleep duration (p<.

05). Changes in loneliness were associated with sensor-derived kinesthetic activity (p<.01).
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Conclusions and implications for practice—Smartphones can be harnessed as instruments 

for unobtrusive monitoring of several behavioral indicators of mental health. Creative leveraging 

of smartphone sensing will create novel opportunities for close-to-invisible psychiatric assessment 

at a scale and efficiency that far exceed what is currently feasible with existing assessment 

technologies.

Introduction

Similarly to physical health, mental health is fluid. Psychiatric conditions that are considered 

“chronic” are not necessarily static; even in the context of severe psychopathology, people 

will experience periods when their illness is in full or partial remission interspersed between 

episodes of symptom exacerbation and functional impairment (Goldberg & Harrow, 2011; 

Strauss et al., 2010). On the other end of the spectrum, people who would largely be 

considered “healthy” may have periods when, due to internal factors, situational conditions, 

or a combination of both, they experience mental health difficulties.

Early identification of warning signs that are associated with increased risk for mental health 

difficulties could facilitate time-sensitive interventions (Calear & Christensen, 2010; Kearns 

et al., 2012; Stafford et al., 2013). Traditional methods of psychiatric assessment such as 

clinical interviews and self-report measures are limited in their capacity to accomplish this 

goal. First, they typically rely on individuals’ retrospective summaries of their experiences 

over weeks, months, or even years. Consequently, they are susceptible to recall inaccuracies 

or reporting biases (Ben-Zeev & Young, 2011; de Beurs et al., 1992; Gloster et al., 2008). 

Second, they take place in treatment center or hospital settings and are administered by 

mental health professionals-- a clinical context that is substantially different from one’s 

usual environment. Thus, they have limited ecological validity (Trull & Ebner-Priemer, 

2012) and may be prone to response biases that are linked with one’s motivation to receive 

treatment (e.g. hyper-endorsing problems) or avoid care (e.g. minimizing symptoms). 

Finally, assessments often take place after mental health problems or functional impairment 

have already reached a level of severity that warrants clinical attention, and are more 

difficult to treat. More nuanced detection of behavioral indicators that may be associated 

with impending problems may lead to earlier interventions, perhaps altering one’s trajectory 

towards harder to treat conditions down the line (Komatsu et al., 2013; Morriss et al., 2007).

Smartphones (i.e. mobile phones with computational capacities) may offer us unique 

opportunities to bypass many of the limitations associated with traditional assessment 

techniques (Proudfoot, 2013; Luxton et al., 2011). Over fifty percent of adults in the United 

States already own smartphones (Smith, 2013) and there is accumulating evidence that many 

people with significant mental health conditions are also part of this group (Ben-Zeev et al., 

2013a; Carras et al., 2014; Torous et al., in press). Contemporary smartphones have a host of 

embedded sensors (e.g., light sensor, Global Positioning System [GPS], accelerometers, 

microphone) that enable their diverse functions (e.g., calling, navigation, gaming). We 

propose to repurpose these sensors so that in addition to their originally intended functions, 

they are also leveraged to passively track behavior without response, manipulation, or data 

entry-burden placed on the user. Thus, while smartphone owners are carrying the device for 
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personal use, the embedded sensors could potentially collect information that may be 

pertinent to their mental health.

Research using smartphone sensors in mental health research is in its infancy, and it is 

unclear whether the types of behavioral data collected with sensors could serve as 

meaningful indicators of functioning or mental health. To address this question, we 

developed unique smartphone software that enabled us to collect multi-modal sensor data 

from individual users over ten weeks. Participants provided self-report stress ratings daily on 

the device, and completed measures of stress, depression, and loneliness before and after the 

sensor data collection period. Assuming internal mental states have measureable behavioral 

implications, we hypothesized that smartphone sensor data would be associated with 

individuals’ daily self-reported stress ratings. We also hypothesized that sensor data would 

be associated with changes in participants’ mental health over the ten week study period.

Method

Participants

The study was approved by the Committee for the Protection of Human Subjects at 

Dartmouth. The study sample consisted of 47 participants (64% undergraduate students and 

36% graduate students) recruited through class announcements describing the study. 

Average age was 22.5 (range: 19–30). These participants were 79% male, 49% Asian, 47% 

white, and 4% black/African-American. After complete description of the study to 

participants, written informed consent was obtained.

Procedures

Individuals were enrolled as a single cohort and participated in the study over a 10-week 

period in the spring of 2013. Participants completed measures of stress, depression, and 

loneliness before and after the smartphone data collection period. The study software was 

developed for smartphones using the Android 4.0 Operating System or higher. These 

devices have several embedded sensors including microphone, Global Positioning System 

(GPS), Wireless Fidelity (WiFi) receiver, multi-axial accelerometers, and light sensor. All 

participants were offered a study smartphone and instructed to carry it with them throughout 

the data collection period, charging it in the room when they sleep. Sensor data were 

collected continuously and did not require participant activation. Prompts to complete self-

report stress ratings would appear daily on the smartphone touchscreen. Participants were 

incentivized to adhere to the study protocol at several stages: at week 3 and week 6, five 

JawBone Up wristband sensors were raffled off among the top 15 data collectors. At week 

10, Ten Google Nexus Smartphones were raffled off among the top 30 data collectors. All 

participants who completed the study received a t-shirt.

Measures

Smartphone Sensing—Each smartphone was installed with software that enables 

unobtrusive sensor data collection. Evolving versions of this software were described 

elsewhere (Berke et al., 2011; Chen et al., 2013; Lane et al., 2011; Lu et al., 2010). The 

system combines both pre-timed and behaviorally-triggered sensor activation for data 
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collection (see Wang et al., for technical description and discussion of preliminary findings 

in Proceedings of the 2014 ACM International Joint Conference on Pervasive and 

Ubiquitous Computing).

Speech Duration: The microphone is activated every 2 minutes to capture ambient sound. 

If the smartphone detects speech, it remains active for the duration of the conversation. To 

protect participant privacy, we used a speech detection system that does not record raw 

audio, but instead, destructively processes the data in real-time to extract and store features 

that are useful to infer the presence of human speech, but not enough to reconstruct 

conversation content. This approach has been shown to have 85.3% accuracy in detecting 

proximal human speech (Lane et al., 2011). Speech Duration was calculated as the total 

minutes the participant was proximal to human speech daily.

Geospatial Activity: The embedded GPS and WiFi receivers were activated every 10 

minutes. GPS calculates the participants’ location by receiving signals sent by satellites 

orbiting the earth. The WiFi receiver on the phone scans WiFi access points in its vicinity 

and records the identification/signal strength for each. The University campus, as well as the 

entire town center which include all dorm areas, are covered by WiFi. We collected the 

locations of all WiFi access points in the network and the WiFi scan logs to determine 

whether a participant was in a specific building. Both GPS and WiFi localization run 

independently. If GPS-derived location was unavailable, the system used WiFi location as 

the entry. Once a GPS or WiFi signal was received, the participant’s location was geo/time-

stamped. The next time the positioning system was activated, it recorded the participant’s 

location. Our software calculated the distance between the previous and current location. 

Geospatial Activity was calculated as the total distance covered daily. Data were log-

transformed due to extremely skewed distribution.

Kinesthetic Activity: Multi-axial accelerometers embedded in the smartphone allow the 

device to detect movement. Our software was developed to identify and classify human 

activity (e.g. walking, running) based on accelerometer streams (Lane et al., 2011; Lu et al., 

2010). The system culls accelerometer data continuously, and an activity rating is generated 

every 2 seconds. For each 10-minute period, the system calculates the ratio of moving vs. 

stationary ratings. If the ratio is greater than a threshold of 0.5, the period is labeled “active”. 

Research with an earlier version of this software has shown it is accurate in inferring 

walking (90.3%), running (98.1%), and being stationary (94.3%) (Lane et al., 2011). 

Kinesthetic Activity was calculated as the summation of all “active” periods, daily.

Sleep Duration: The system exploits smartphone use data (i.e. device “lock” duration), 

accelerometer inferences (i.e. stationery time), sound features (i.e. ambient silence), and 

light levels (i.e. ambient darkness) to approximate the amount of time each participant was 

sleeping. The model is calculated as a linear combination of these four factors. Research 

using an earlier version of this technique has shown that sleep duration can be inferred 

within +/− 42 minutes of self-reported sleep duration (Chen et al., 2013). Sleep Duration 

was calculated as the approximated amount of time each participant slept the previous night.
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Self-report

Daily Stress: Individuals were asked to complete self-assessments of momentary stress 

daily, five days a week, using the smartphone touch screen (Average weekly response rate: 

4.92 days a week). EMA was signal-contingent and administered at randomly selected time 

points during the day. The statement: “Right now, I am…” appeared on the top of screen, 

and underneath were five response options (1-”Feeling great” to 5- “Stressed out”). Daily 

Stress scores were calculated as the stress ratings for each individual, daily.

Data from the smartphones (i.e. sensor streams, self-report) were uploaded automatically to 

a secure study server when the user recharged the device (See Figure 1).

Mental Health—Participants completed measures of stress, depression, and loneliness 

before and after the sensor data collection period.

Stress: Participants completed the Perceived Stress Scale (PSS) (Cohen et al., 1983). The 

10-item PSS measures how often situations in one’s life were perceived as stressful during 

the last month. Items were designed to tap how unpredictable, uncontrollable, and 

overloaded respondents experience their lives. Higher scores suggest greater levels of stress. 

Among college students, the PSS has been shown to have good internal consistency 

(coefficient α=.85) and test-retest reliability (r = .85). The correlation of PSS scores with 

physical symptoms of stress is .65 (Cohen et al., 1983).

Depression: Participants completed the nine item depression scale from the Patient Health 

Questionnaire (PHQ) (Spitzer, Kroenke, & Williams 1999). The PHQ-9 is a widely-used 

self-report measure of depressed symptomology over the last two weeks (Kroenke, Spitzer, 

Williams, 2001). Higher scores suggest greater severity. The PHQ-9 has good internal 

consistency (α=.89) and test re-test reliability (r = .84). The correlation of PHQ-9 scores 

with a measure of mental health that is associated with depression is .73 (Kroenke, Spitzer, 

Williams, 2001).

Loneliness: Participants completed the Revised UCLA Loneliness Scale (Russel et al., 

1980). This 20-item self-rated instrument measures one’s feelings of loneliness and social 

isolation. Participants are asked to indicate how often they feel the way described in a series 

of statements (e.g. “There is no one I can turn to”, “I feel isolated from others”). Higher 

scores indicate greater subjective feelings of loneliness. The measure has high internal 

consistency (α=.94), and scores have been shown to be significantly associated with the 

amount of time individuals are alone each day (r =.41), the number of close friends they 

have (r = −.44), and self-labeled loneliness (r =.70) (Russel et al., 1980).

Overview of Analyses

The objective of the first analysis was to model the relationship between Daily Stress 

(outcome) and several covariates derived from smartphone sensing– Geospatial Activity, 

Kinesthetic Activity, Speech Duration, and Sleep Duration. Data were aggregated daily and 

resulted in a maximum of 65 possible data points. We conducted mixed-effects linear 

modeling to account for the repeated measures design, the time-varying nature of the 
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variables, and missing data. Time was coded as 0,1,2…N (with each point representing a 

day), and treated as continuous as we fitted parametric curves in the model. For the analyses, 

time was centered (i.e., the intercept was shifted to the middle).

The second analysis was conducted to evaluate the relationship between sensor data, and 

pre/post changes in participants’ mental health. In this analysis, we are also able to find out 

during which period of time in the study the sensor data is most associated with individual-

level changes in outcome. To do so, we used penalized functional regression (Goldsmith, 

Bobb, Crainiceanu, Caffo, Reich, 2011). This multi-step technique can use intensive 

repeated-measure variables as predictors and relate them, as a whole, to individual-level 

outcome measures. First, a smooth non-parametric function is fit to each individual’s sensor 

variable using principle component basis splines. Thus, sensor data is described as a 

function rather than a series of data points and does not require that each participant is 

measured at the same time points. Next, a set of functional regression coefficients is fit to 

this functional representation of sensor data (via a truncated power series spline) to predict 

changes in PSS, PHQ-9, and UCLA Loneliness Scale scores. This is akin to estimating a set 

of weights for each section of the predictor function in relation to the outcome. Finally, a 

permutation test evaluated the significance of the set of functional regression parameters in 

predicting the individual outcome. The model was fit repeatedly, each time with different 

random pairing of each outcome value with a set of functional predictor values, and an F-

statistic is calculated for the model. The proportion of times an F-statistic more extreme than 

the one obtained from the original dataset was obtained gives the permutation p-value which 

is used to quantify the likelihood that the observed result was obtained by chance if there 

was no association between the outcome and the functional predictor. Model fit and 

permutation tests were performed via the funreg package in R (Dziak & Shiyko, 2014) 

which makes the Goldsmith et al. technique available for intensively collected data. The 

benefit of penalized functional regression in the sensor data context is the ability to use all 

available sensor data rather than summarizing (e.g. via averaging across time points) and the 

ability to estimate a flexible, time-varying relationship between the sensor variable and the 

outcome. In this way, penalized regression allows differential weighting of observations in 

the study based on which time periods tend to be most related to the outcome. Thus, in 

addition to an indication of whether or not a sensor variable was related to an outcome, we 

were able to obtain an estimate (via regression coefficients) of which period of time in the 

study is most associated with individual-level change in outcome.

Results

Of 37 participants who completed PHQ-9 ratings at the end of the data collection period, 

11% endorsed no depressive symptoms, 38% reported minimal depression, 32% reported 

mild depression, 8% reported moderate depression, 6% moderately severe depression, and 

5% reported severe depression. Averaged EMA daily stress ratings were significantly 

correlated with scores on a valid measure of stress (PSS) completed at the end of the study (r 

= 0.41, p < 0.01).
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Relationship between Smartphone Sensor Data and Average Daily Stress

Three mixed-effects models were fitted to the data: one with original covariates, a second 

with both mean scores (average score for each individual across days) and deviation scores 

(difference between each individual’s daily score and his/her average) of the time-varying 

covariates, and a third model only with deviation scores. For models with time-varying 

covariates, statisticians recommend evaluating both between-subject and within-subject 

effects, unless both types of effects were similar (model fit would not be improved) 

(Hedeker & Gibbons, 2006). Our results indicated that the model with mean scores and 

deviation scores of covariates resulted in poorer fit, so it was dropped. The model with 

deviation scores had better fit, and we were also interested in understanding the relationship 

between “deviation” (variability) of the covariates and outcome. We report on the results 

from these two models in Table 1.

For both models, Speech Duration, Geospatial Activity, Kinesthetic Activity, and Sleep 

Duration were included as covariates. “Time” was also included to capture the natural 

evolution of Daily Stress over the data collection period. Daily Stress levels showed a 

curvilinear pattern, so both linear time and quadratic time components were included in the 

model. Random variation terms (i.e. random intercept and random slope of time) were 

included to capture both between-individual difference and variations in change in Daily 

Stress. The results of Model 1 indicate that both Geospatial Activity (Estimate: −0.09, SE: 

0.04, p=0.0278) and Sleep Duration (Estimate: −0.03, SE: 0.02, p=0.0493) were inversely 

associated with Daily Stress. The results of Model 2 show inverse relationships with Daily 

Stress: deviation from one’s average Geospatial Activity was significantly negatively 

associated with Daily Stress (Estimate: −0.08, SE: 0.04, p= 0.048), and deviation from one’s 

average Speech Duration had marginally significant negative association with Daily Stress 

(Estimate: −0.03, SE: 0.02, p = .0873).

In both models, quadratic time components were significant, which indicates that as time 

progressed, Daily Stress increased but in a decelerating rate, or the trend gradually reversed 

itself. This may be linked with students gradually growing accustomed to academic 

pressures as the term progresses, experiencing them as less subjectively stressful over time. 

Intercept variance and slope variance for linear time component were significant, and 

marginally significant, respectively, in both models. This indicates that participants varied 

on average level of stress and on linear change in stress. Stress ratings and sensor-derived 

data as a function of time are presented in Figure 2.

Relationship between Smartphone Sensor Data and Pre/Post Changes in Mental Health

Significant pre-post changes were seen in mental health measures PHQ-9, PSS, and UCLA 

Loneliness Scale (p<0.0001, p=0.003, and p=0.02, respectively) when evaluated with a 

Wilcoxon signed rank test. Change scores were calculated as the post-measurement minus 

the pre-measurement. A higher value for each of the measures represents poorer mental 

health. Therefore, the smaller the value of the change score, the better one’s mental health 

status; a highly negative change score is an indicator of greater improvement in mental 

health. For each measure, the median change scores were 1.0, 0.5, and −0.5, respectively, 

indicating overall worsening of depression (PHQ-9) and stress (PSS), and improvement in 
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subjective loneliness (UCLA Loneliness Scale) over the study period. Several sensor 

variables were found to be significantly associated with changes in mental health scores. In 

the penalized functional regression analysis, speech duration was significantly associated 

with changes in PHQ-9 over the course of the study (p=0.048). The regression coefficients 

indicate that earlier in the study (approximately days 10–30), increased Speech Duration was 

associated with better PHQ-9 change scores (smaller valued), while in the later days of the 

study (approximately days for 40–58) the direction of the association changed such that 

increased Speech Duration was associated with worse PHQ-9 change scores (larger valued). 

A significant relationship was also found between Geospatial Activity and changes in 

PHQ-9 (p=0.022). Specifically, earlier in the study (approximately days 15–20) increased 

Geospatial Activity was associated with better PHQ-9 change scores. Finally, sleep duration 

was also significantly associated with PHQ-9 (p=0.028) with longer sleep duration 

experienced during the early days of the study (days < 45) predictive of worse PHQ-9 

change scores. In contrast, during the later days of the study (days > 45), increased Sleep 

Durations were predictive of better PHQ-9 change scores. No significant association was 

found between Kinesthetic Activity and PHQ-9 change scores. Kinesthetic Activity was 

significantly related to UCLA Loneliness Scale change scores (p=0.002) with higher values 

later in the study (approximately days > 50) predictive of better UCLA Loneliness Scale 

change scores. No significant associations were found between UCLA Loneliness Scale 

change scores and Sleep Duration, Geospatial Activity, or Speech Duration. No significant 

associations were found between change in PSS scores and any sensor variables. Each of the 

significant relationships between sensor data and mental health change scores are illustrated 

with the plots of the functional regression coefficient plotted along with 95% confidence 

intervals (Figure 3. panels a-d), where positive regression coefficients indicate a prediction 

of worse mental health change scores and negative regression coefficients indicate a 

relationship to better mental health change scores. Confidence intervals indicate periods of 

time where the functional regression coefficient is significantly different from 0, while the 

overall permutation test p-value indicates the significance of the relationship between the 

functional regression coefficient across the entire time-period and the value of the change 

score. Insert Figure 3 here

Discussion

This proof-of-concept study showed that smartphones can be used as instruments for 

unobtrusive collection of behavioral markers that are associated with daily stress and 

changes in mental health. Sensor-derived Geospatial Activity, Sleep Duration, and 

variability in Geospatial Activity were associated with self-reported daily stress levels. 

Variability in the amount of time people spent proximal to human speech was marginally 

associated with daily stress. Speech Duration, Geospatial Activity, and Sleep Duration were 

associated with changes in participants’ depression levels over the course of the study. 

Kinesthetic activity was associated with changes in their subjective loneliness. Importantly, 

sensor data were collected passively and processed automatically on the device, with 

minimal user burden.

Previous research has already identified relationships between activity, sleep, social context, 

and mental health (e.g., Asmundson et al., 2013; Hawkley & Cacioppo, 2010; Kyung Lee & 
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Douglass 2010; Mammen & Faulkner, 2013). The innovation of the current study lies in its 

demonstration that the digital traces of these behaviors, as captured with smartphone sensors 

and software, may serve as indicators of one’s daily stress and changes in mental health 

status over time. Of particular significance is that this can be accomplished passively, with 

minimal burden to individuals (i.e. no need to engage in periodic interviews, complete self-

reports, or set foot in a clinic). Future research should examine whether sensor data captured 

by smartphones can be used to predict impending problems in clinical populations (e.g., 

relapse in people with schizophrenia, manic episodes in people with bipolar disorder).

This study has several limitations. Participants were all younger adults, and may be less 

representative of the broader population in terms of their demographic characteristics, 

education, level of functioning, or willingness to engage in smartphone monitoring. 

However, the participants were not monolithic in terms of their behaviors and mental health 

status; some were very active while others were not, some reported no mental health 

difficulties while others endorsed severe symptoms of depression. Future research should 

examine feasibility in older individuals and people with identified mental health conditions. 

The study was conducted at a university campus, a setting that might be different from other 

environments (e.g. more wireless access points, structured social gatherings). Additional 

research is needed to examine the feasibility of continuous smartphone data collection in 

diverse environments. The smartphone speech detection system may not be fully capable of 

differentiating live human speech from radio or television-generated audio, making it 

difficult to determine with complete accuracy whether a participant was actually in a social 

context. Our modelling strategy assumed that sleep typically takes place in darkened 

environments, as indicated by the smartphone light sensor. However, this approach does not 

account for naps throughout the day, or individuals who prefer to sleep with the light on. In 

future research, it would be advantageous to have participants describe their typical sleep 

environment in order to calibrate more individualized models (e.g., should ambient light 

influence the sleep duration estimate or not).

Conclusions and Implications for Practice

Mobile Health (mHealth) research using sophisticated technologies in uncontrolled 

environments entails a host of conceptual and methodological challenges (Ben-Zeev et al., 

2014a), but the potential benefits seem to far outweigh the costs (Brian & Ben-Zeev, 2014; 

Luxton et al., 2011; Proudfoot, 2013). As technology evolves, it is exciting to envision a 

future in which individuals who could benefit from additional support have personalized 

sensor-enabled data collection systems that are installed on their smartphones and calibrated 

to their individual needs. Different people will likely have different behavioral indicators of 

mental health difficulties (e.g. inactivity/frenetic activity, insomnia/hypersomnia). Data 

captured with smartphone sensing techniques may be used to trigger time-sensitive follow-

up including feedback reports processed and displayed on the device, or mobile health 

(mHealth) interventions that target problem areas (e.g. irregular sleep patterns) delivered 

directly to the individual (e.g., Ben-Zeev et al., 2014b; Burns et al., 2011). Moreover, 

smartphone users who are receiving mental health services may elect to authorize 

transmission of sensor summary reports seamlessly to their mental health providers to 

inform ongoing care.
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Smartphone technology and telecommunication infrastructure is spreading globally. While 

the technological sophistication and capabilities of smartphones continue to increase, the 

costs of devices and data plans continue to drop. We demonstrated that these widely-

available instruments can be successfully harnessed to capture behavioral information that is 

relevant to changes in mental health and functioning. In the future, innovative 

interdisciplinary research combining behavioral, computational, and engineering sciences 

will create smartphone sensing techniques that will enable close to invisible mental health 

monitoring at a scale and efficiency that far exceed what is currently feasible with existing 

assessment technology. Passive smartphone sensing may be insufficient to make definitive 

predictions regarding one’s mental health status without consideration of a host of additional 

variables (e.g., environmental, intrapsychic, contextual) that cannot be captured by phone 

sensors alone. Integration of other digital sources of information such as personal social 

media posts and crowd-sourced information about one’s immediate environment into 

predictive models may also strengthen the role of assistive technology in quantified self-

tracking (Swan, 2009).
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Figure 1. 
Overview of Smartphone Data Collection

Ben-Zeev et al. Page 13

Psychiatr Rehabil J. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Self-Reported Stress Ratings and Smartphone Sensor Behavioral Data as a Function of Time 

in Study (N=47).
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Figure 3. 
Estimated functional coefficients and 95% confidence intervals from penalized functional 

regression models. Positive regression coefficients indicate a positive relationship between 

the sensor predictor variable and the individual-level outcome change score and negative 

regression coefficients indicate an inverse relationship. Confidence intervals indicate periods 

of time where the functional regression coefficient is significantly different from 0, while 

the overall permutation test p-value indicates the significance of the relationship between the 

functional regression coefficient across the entire time-period and the value of the change 

score.
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Table 1

Mixed-Effects Linear Models for the Relationship Between Sensor Data and Daily Stress (N=47)

Model 1: Predictors in original measurement scale

Covariate Estimate Standard error p-value

Fixed effects

 Intercept 3.93230 0.19830 <.0001

 Time (linear) 0.00218 0.00358 0.5470

 Time2 (quadratic) −0.00071 0.00014 <.0001

 Kinesthetic Activity −0.00031 0.00061 0.6103

 Speech Duration −0.00041 0.00027 0.1260

 Sleep Duration −0.03721 0.01889 0.0493

 Geospatial Activity −0.08954 0.04060 0.0278

Random effects

 Intercept variance 0.29870 0.09239 0.0006

 Time (linear) Variance 0.00012 0.00008 0.0701

Model fit statistics

 −2LL = 1490.0, AIC = 1498.0 & BIC = 1505.3

Model 2: Predictors as deviation scores from individual means

Covariate Estimate Standard error p-value

Fixed effects

 Intercept 3.38300 0.10790 <.0001

 Time (linear) 0.00203 0.00360 0.5769

 Time2 (quadratic) −0.00070 0.00014 <.0001

 Kinesthetic Activity −0.00062 0.00063 0.3239

 Speech Duration −0.00047 0.00028 0.0873

 Sleep Duration −0.03152 0.01931 0.1033

 Geospatial Activity −0.08237 0.04155 0.0480

Random Effects

 Intercept variance 0.30570 0.09151 0.0004

 Time (linear) Variance 0.00012 0.00008 0.0666

Model fit statistics

 −2LL = 1489.8.0, AIC = 1497.8 & BIC = 1505.1
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